Exercise 35

The flow lines (or streamlines) of a vector field are the paths followed by a particle whose velocity field is the given vector field. Thus the vectors in a vector field are tangent to the flow lines.
(a) Use a sketch of the vector field $\mathbf{F}(x, y)=x \mathbf{i}-y \mathbf{j}$ to draw some flow lines. From your sketches, can you guess the equations of the flow lines?
(b) If parametric equations of a flow line are $x=x(t), y=y(t)$, explain why these functions satisfy the differential equations $d x / d t=x$ and $d y / d t=-y$. Then solve the differential equations to find an equation of the flow line that passes through the point $(1,1)$.

Solution

The vector field $\mathbf{F}(x, y)=x \mathbf{i}-y \mathbf{j}$ is shown below along with several flow lines in red.

Each of the vectors in the field is tangent to a possible flow line, similar to the way a velocity vector is tangent to the corresponding position vector.

$$
\mathbf{F}(x(t), y(t))=\frac{d \mathbf{X}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle
$$

Set $d x / d t$ equal to the x-component of \mathbf{F} and set $d y / d t$ equal to the y-component of \mathbf{F}.

$$
\frac{d x}{d t}=x \quad \frac{d y}{d t}=-y
$$

Solving these ODEs yields

$$
x=A e^{t} \quad \text { and } \quad y=B e^{-t} .
$$

Substitute $x / A=e^{t}$ into the equation for y.

$$
y=B\left(\frac{A}{x}\right)=\frac{A B}{x}
$$

Use a new constant C for $A B$.

$$
y=\frac{C}{x}
$$

Use the fact that the flow line has to go through $(1,1)$ to determine C.

$$
1=\frac{C}{1} \quad \rightarrow \quad C=1
$$

Therefore,

$$
y=\frac{1}{x}, \quad x>0 .
$$

The restriction $x>0$ is taken because only the part of the hyperbola that goes through $(1,1)$ is valid.

